Picosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. II. Intracluster vibrational energy redistribution of the OH stretching vibration of hydrogen-bonded clusters.

نویسندگان

  • Masakazu Kayano
  • Takayuki Ebata
  • Yuji Yamada
  • Naohiko Mikami
چکیده

A picosecond time-resolved IR-UV pump-probe spectroscopic study has been carried out for investigating the intracluster vibrational energy redistribution (IVR) and subsequent dissociation of hydrogen-bonded clusters of phenol (C6H5OH) and partially deuterated phenol (C6D5OH, phenol-d5) with various solvent molecules. The H-bonded OH stretching vibration was pumped by a picosecond IR pulse, and the transient S1-S0 UV spectra from the pumped level as well as the redistributed levels were observed with a picosecond UV laser. Two types of hydrogen-bonded clusters were investigated with respect to the effect of the H-bonding strength on the energy flow process: the first is of a strong "sigma-type H-bond" such as phenol-(dimethyl ether)(n=1) and phenol dimer, and the second is phenol-(ethylene)(n=1) having a weak "pi-type H-bond." It was found that the population of the IR-pumped OH level exhibits a single-exponential decay, whose rate increases with the H-bond strength. On the other hand, the transient UV spectrum due to the redistributed levels showed a different time evolutions at different monitoring UV frequency. From an analysis of the time profiles of the transient UV spectra, the following three-step scheme has been proposed for describing the energy flow starting from the IVR of the initially excited H-bonded OH stretching level to the dissociation of the H bond. (1) The intramolecular vibrational energy redistribution takes place within the phenolic site, preparing a hot phenol. (2) The energy flows from the hot phenol to the intermolecular vibrational modes of the cluster. (3) Finally, the hydrogen bond dissociates. Among the three steps, the rate constant of the first step was strongly dependent on the H-bond strength, while the rate constants of the other two steps were almost independent of the H-bond strength. For the dissociation of the hydrogen bond, the observed rate constants were compared with those calculated by the Rice, Ramsperger, Kassel, and Marcus model. The result suggests that dissociation of the hydrogen bond takes place much faster than complete energy randomization within the clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Picosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. I. Intramolecular vibrational energy redistribution of the OH and CH stretching vibrations of bare phenol.

The intramolecular vibrational energy redistribution (IVR) of the OH stretching vibration of jet-cooled phenol-h6 (C6H8OH) and phenol-d8 (C6D8OH) in the electronic ground state has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. The OH stretching vibration of phenol was excited with a picosecond IR laser pulse, and the subsequent temporal evolutions of the initially...

متن کامل

Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline.

Intramolecular vibrational energy redistribution (IVR) of the NH2 symmetric and asymmetric stretching vibrations of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. A picosecond IR laser pulse excited the NH2 symmetric or asymmetric stretching vibration of aniline in the electronic ground state and the subsequent time evolutions of the excited ...

متن کامل

Relaxation dynamics of NH stretching vibrations of 2-aminopyridine and its dimer in a supersonic beam.

Picosecond time-resolved IR-UV pump-probe spectroscopy has been carried out to elucidate vibrational energy relaxation (VER) of the NH stretching vibrations of 2-aminopyridine monomer (2AP) and dimer [(2AP)(2)] in supersonic beams. In bare 2AP, intramolecular vibrational energy redistribution (IVR) of the NH vibrations is described by the two-bath mode model, in which the initial vibrational en...

متن کامل

Classification: PHYSICAL SCIENCES / CHEMISTRY / PHYSICS Relaxation dynamics of NH stretching vibrations of 2-aminopyridine and its dimer in a supersonic beam

Picosecond time-resolved IR-UV pump-probe spectroscopy has been carried out in order to elucidate vibrational energy relaxation (VER) of the NH stretching vibrations of 2-aminopyridine monomer (2AP) and dimer ((2AP)2) in supersonic beams. In bare 2AP, intramolecular vibrational energy redistribution (IVR) of the NH vibrations is described by the two bath mode model, where the initial vibrationa...

متن کامل

Real-time detection of doorway states in the intramolecular vibrational energy redistribution of the OH/OD stretch vibration of phenol.

A picosecond time-resolved IR-UV pump-probe spectroscopic study was carried out for the intramolecular vibrational energy redistribution of the OH/OD stretching vibration of isolated phenol and its isotopomers in supersonic beams. The time evolution due to IVR showed a significant isotope effect; the OH stretch vibration showed a single exponential decay and its lifetime is greatly lengthened u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 16  شماره 

صفحات  -

تاریخ انتشار 2004